

Presentations from Optimize This! 2014

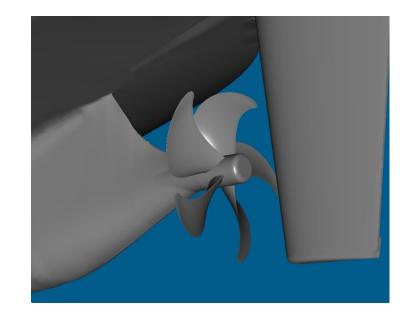
Table of Contents

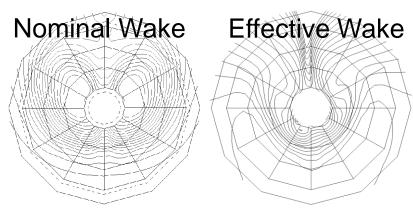
•	Richard Korpus — American Bureau of Snipping "Improving the Propulsive Performance of Ships"	3
•	Joel Davison – CD-adapco	26
	"Improving Manifold Design Through Design Exploration and Co-simulation"	
•	David Fredricksson and Foad Mohammadi – CAE Value AB	48
	"Multi-Objective Optimization of a 3R Robotic Manipulator Equipped with Nonlinear Transmission Joints"	
•	Javier Rodriguez and Velayudham Ganesan – EDAG Inc.	67
	"Collaborative Design Optimization Process"	
•	Kalyanmoy Deb – Michigan State University	84
	"Recent Developments in Evolutionary Multi-objective Optimization"	
•	Jesper Slattengren – Pratt & Miller Engineering	113
	"Using HEEDS to Determine Required System Complexity Early in the Design Cycle"	
•	Gerard Reynolds – Atkins Global	134
	"Safety Driven Optimization of Offshore Platform Orientation for Oil & Gas"	
•	Megan Karalus – CD-adapco	162
	"HEEDS/ DARS-Basic Global Mechanism Optimization"	
•	Yuvraj Dewan and Chad Custer – CD-adapco	189
	"Centrifugal Pump Optimization"	
•	David Ewbank and Brian Cheung – VI-Grade UK and Systems Level Simulation Inc.	233
	"Making use of Advanced Simulation to Support Race Car Testing"	

Improving the Propulsive Performance of Ships

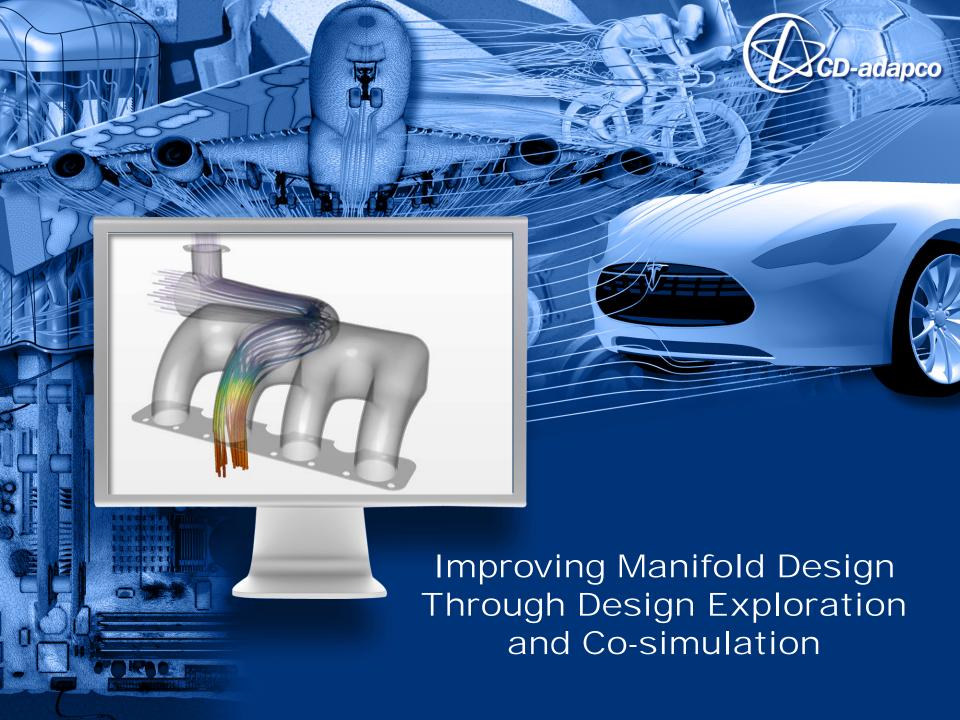
Richard Korpus

American Bureau of Shipping


Red Cedar's "Optimize This" Conference Dearborn, Michigan, October 15, 2014

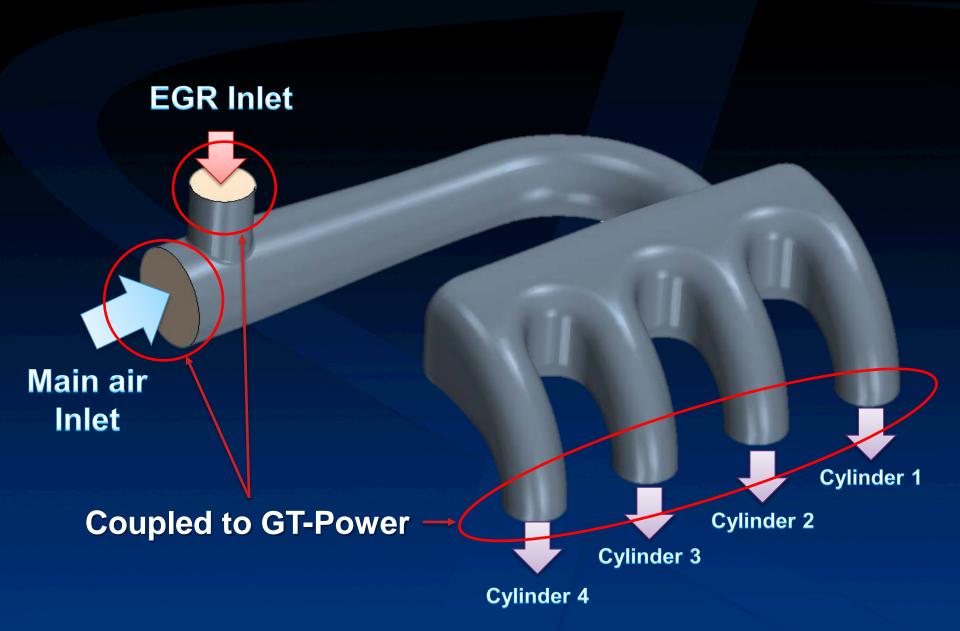

The Maritime Classification Business

- Insurance companies and international safety & environmental regulatory agencies require expensive and potentially hazardous assets like ships and offshore structures meet design and operational standards set by unbiased and technically competent third parties ("Classification Societies").
- Designs and owners must meet the rules set forth by Class, and their assets maintained to the Class standard.
- Class Societies offer various services to improve competitiveness.
 One of ABS's advantages is state-of-the-art technology to help owners and operators make difficult design decisions.
- Two of the most advanced and versatile technologies available for towards that end are Computational Fluid Dynamics (CFD) and performance improvement.


Biggest Challenge: Propeller Design

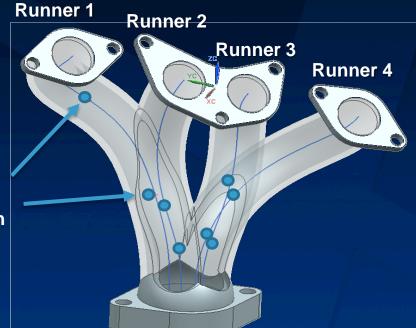
- Propellers operate in the nonuniform viscous wake of a hull.
- Optimal propellers need to be designed in their true operating environment.
- Today's state-of-the-art still assumes steady inflow with corrections for spatial and temporal averages of inflow.
- Hull wake is only available at model scale.

ABS


Introduction

- Two studies presented to demonstrate how HEEDS technology may be used to improve designs involving co-simulation
- Design exploration of an inlet manifold
 - GT-SUITE 1D engine performance model
 - STAR-CCM+ 3D CFD air flow model & 3D internal CAD model
 - Optimate+ for process integration & design exploration
- Design exploration of an exhaust manifold
 - NX CAD model
 - Abaqus 3D structural/thermal model
 - STAR-CCM+ 3D CFD air flow model
 - HEEDS for process integration & design exploration

Case 1 - Inlet manifold



Case 2 - Exhaust manifold

- Parametric 3D geometry modelled in Siemens NX CAD
 - Each of the four runners is defined using a spline
 - The points defining the spline are varied by + or 10% of the baseline position
 - x, y, z coordinates of two interior points for four runners (24 variables in total)

Spline Points for Runner 1 (x, y, z coordinates of each spline point is a variable)

Multi-Objective Optimization of a 3R Robotic Manipulator Equipped with Nonlinear Transmission Joints

David Fredriksson, Foad Mohammadi

The aim

Investigate the possibility of using a nonlinear transmission joint in a robotic arm to decrease the power consumption of the arm while maintaining (or potentially improving) manipulability and payload performance, by exploiting the unique characteristics of the joint.

Agenda

- The nonlinear transmission joint
- The 3R manipulator
- Inverse Kinematics & Manipulability Ellipsoid Analysis
- The optimization setup
- Results
- Conclusion

Collaborative Design Optimization Process

Javier Rodríguez Director Vehicle Integration, EDAG Inc. Velayudham Ganesan Manager, CAE, EDAG Inc.

Presentation Themes

- Introduction

 Mass reduction feasibility study
- Weight Optimization
 Strategies, CAE Based Optimization
- Collaborative Optimization Process
 Sub-systems, Full Vehicle, Optimization Stages
- Strategy Analysis
 Sub-systems and Full Vehicle Strategies
- Cost Impact
 MDO Output, Optimized LWV
- **LWV Performance Assessment** *Trade-off*
- 7 References

Introduction Weight Reduction Feasibility Study

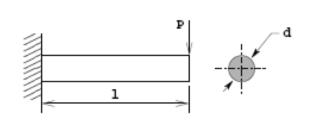
- Weight Reduction Studies initiated by EPA
- Collaborative optimization carried out for:
 - Toyota Venza, mid size cross over utility (CUV)
 - Pick-up Truck
- The studies were performed by considering the following parameters:
 - Only technologies and techniques currently feasible for manufacturability were considered
 - Options had to be cost effective for a MY 2017, 2020 high volume production vehicles respectively [1].
 - The vehicle NVH modal characteristics and crash performance had to be maintained
 - The total cost impact needed to be minimal
 - The overall vehicle safety performance had to be maintained

Introduction Weight Reduction Feasibility Study

- Weight Reduction Scope
- Body-In-White (BIW), a prime system typically comprises of 20-25% of the total curb weight
 - Uni-Body, typically cabin BIW (e.g: Sedan, CUV, ...)
 - Body-On-Frame, typically pick-up trucks
- Closures & Bumpers
 - Doors, Fenders, Hood and Tailgate
 - Front and Rear Bumpers
- The weight reduction and cost effects [5] of multiple lightweight designs were analyzed and evaluated together using advanced optimization and engineering tools
- This presentation is about the processes used for the evaluation of the body system
 - Sub-systems and Integrated Full Vehicle
- Utilizing advanced cooperative optimization computer-aided engineering (CAE) tools including HEEDS MDO

Recent Developments in Evolutionary Multi-objective Optimization

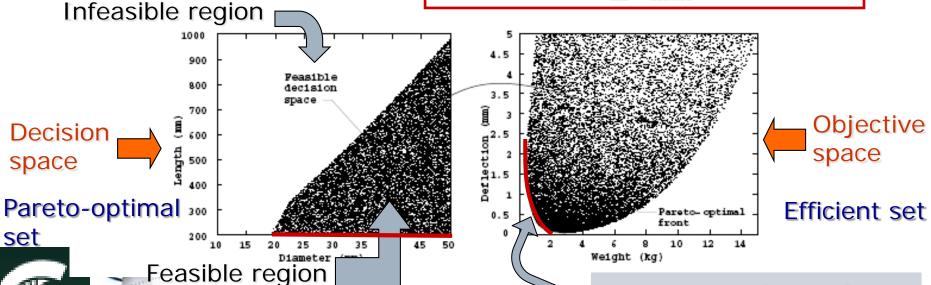
Kalyanmoy Deb


Koenig Endowed Chair Professor Michigan State University East Lansing, USA

kdeb@egr.msu.edu

http://www.egr.msu.edu/~kdeb

Multi-Objective Optimization



Minimize $f_1(d,l) = \rho \frac{\pi d^2}{4} l$

Minimize $f_2(d,l) = \delta = \frac{64Pl^3}{3E\pi d^4}$

subject to $\sigma_{\max} \leq S_y$

 $\delta \le \delta_{\rm max}$

"Optimize This" Presentation 15 October 2014 A number of solutions are optimal

Using HEEDS to Determine Required System Complexity Early in the Design Cycle

Jesper Slattengren
Pratt & Miller Engineering
jslat@prattmiller.com

Background

- We are all familiar with how to use HEEDS to find the optimal solution to a design project.
- But can HEEDS be used to help define the system topology early on in the design cycle?
- This presentation shows an example on how HEEDS was used to not only find a feasible solution, but also how it was used to determine that a cheaper damper could be used.

PRADE tors, objectives and constraints

- Requirement summary:
 - Find ride elements that:
 - Satisfy the constraints
 - Optimizes the ride criteria

Simulation	Constraint	#
10" half-round GVW	Vertical accel	4
10" half-round CVW	Vertical accel	4
Drop-off GVW	Ride frequencies	4
	Ride damping	4
Drop-off CVW	Ride frequencies	4
	Ride damping	4
Offroad CVW	Absorbed power	4
Offroad GVW	Absorbed power	4
Step steer	Yaw overshoot	1
	Roll overshoot	1
	Yaw damping	1
	Roll damping	1
Constant radius	Understeer gradient	2
	Max lateral accel	1
	Roll gradient	1
Total		40

Factors				
	Dual rate spring	5		
Eront	Position sensitive damper	13		
Front	Anti-roll bar	3		
	Geometry	3		
	Dual rate spring	5		
Rear	Position sensitive damper	13		
Real	Anti-roll bar	3		
	Geometry	1		
Total		46		

Objective: Minimize the sum of the ride measures

ATKINS

Safety Driven Optimization of Offshore Platform Orientation for Oil & Gas

Gerard Reynolds

October 15th, 2014

Optimize This! 2014 International HEEDS User Conference

Background Information

- Type: Tension Leg Platform (TLP)
- Size: 300 ft x 300 ft x 100 ft
- Personnel on Board: 180
- Access: 90 min by Helicopter
- Cost: \$3.5 bn
- Production: \$10 MM/day

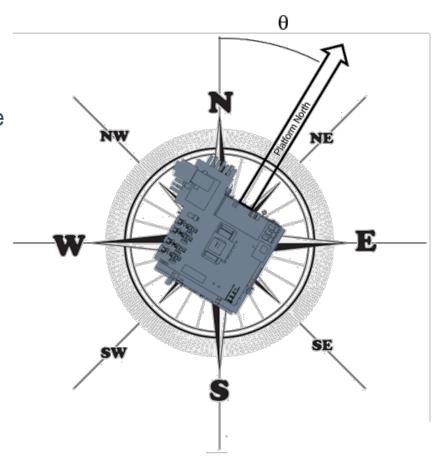
Consequences

Piper Alpha

Deepwater Horizon

Thunderhorse

Petronas 36

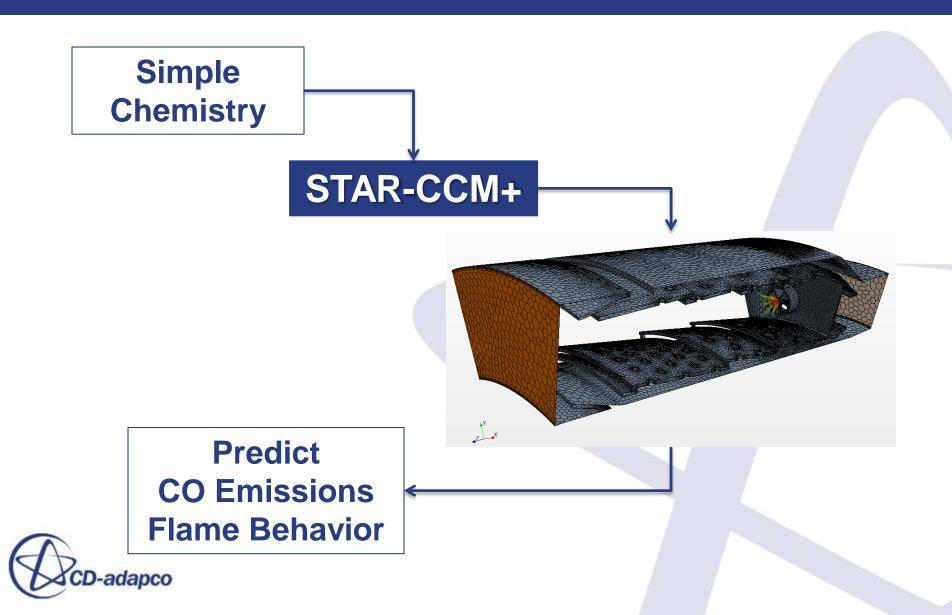

Problem Statement

Considering:

- Ventilation
- Helideck Impairment from Turbine Exhaust

Find:

Optimum Platform Orientation

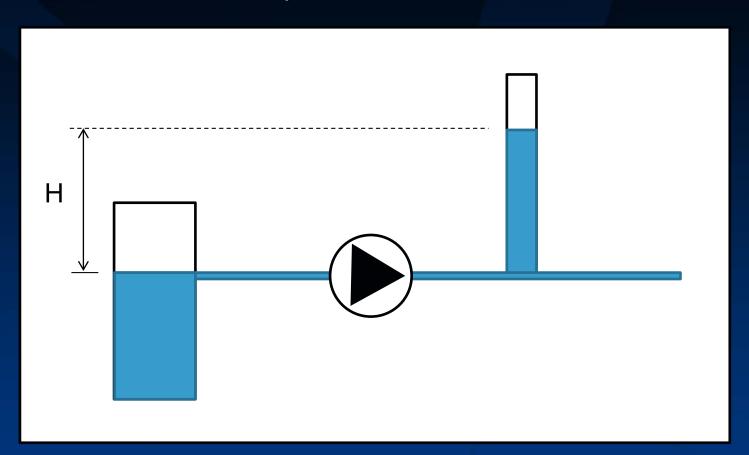


HEEDS/ DARS-Basic Global Mechanism Optimization

Megan Karalus, PhD

Why optimize a global mechanism?

Outline


- **⊗** Background
- **Optimization objective**
- **Analysis tools**
- **⊗** Results

Background

Pumps are designed to:

- Move a certain volume of liquid
- Produce a certain exit pressure, which is measured in meters of head

Background

- **®** Reducing the power required to drive the pump:
 - Allows for a smaller motor
 - Reduces operating cost
- A small reduction in required power translates to large cost savings

Optimization Statement

Objective

- 1. Reduce the power required to drive the pump Constraints
- Retrofit the impeller only (same casing)
- **Maintain the specified volumetric flow rate**
- **Maintain the specified outlet pressure**

Car Testing

2014 - BTCC

Testing Programme

- The current generation of BTCC car has not tested at Guadix before
- Drivers Marc Hynes and Sam Tordoff had not been to Guadix before
- 2009 was Triple Eights last visit to the circuit for which we have a lot of historical data
- How did we approach these issues with simulation?

Circuito Guadix

European Race Track

- Commonly used for testing
- Located in southern Spain
- New to 888 Racing
- How to prepare both cars and drivers for testing?

A Special Thank You to Our Sponsors

rescale

